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CONTEXT OF IRFs



/0
@, ermdi IRFs defined in Instrument Frame

Gdr" ma-ray

/ Space Telescope

Recall that IRFs are designed in context of Likelihood fitting, for example:
Aeff(p’E’t)
where p is the celestial direction and the time dependence is there for 2

reasons:
1. Changing instrument (configuration, degradation, etc.)

2. Instrument pointing

In practice we work in the instrument frame, so we have, for example:
Aeﬁ(V’E’t)

where v is the direction in the instrument frame and the time dependence only

reflects changes in the instrument

In fact, this is why we build “livetime cubes” which give us the viewing profile for
each direction in the sky:
1:Iive (V’p)

Which we can use to derive the exposure for each direction and energy band
E(E,p) = @ Aeff(v,E) t;,.(v;p) d2

& = Integral symbol in Microsoft Power Point
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s, ermi PSF and E;,, also done in instrument frame

Gamma ray

We also define the PSF and E, in instrument coordinates, for example:
P(v’;v,E,1)
D(E’;v,E,t)

Where v’ and E’ and observed direction and energies (as opposed to true ones)

Then with the “livetime cubes” we can do the current convolution integrals to get

the expected counts distribution M(E’,p’) from a flux model F(p;E) which is what
we need for the likelihood fit

M(E’,p’) = & tie (ViP) As(V,E) P(V’;v,E) D(E’;v,E) F(p,E) dQ,



EFFECTIVE AREA: A..



< ermi Effective Area (A_«)
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@s, ermi Building the A_tables
Gamma-ray
/ SpaceTele op
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Generate known “isotropic” incoming flux: (200M events, 1/E spectrum)
Count how many events pass cuts in each bin

Normalize to input flux
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Understanding A_; Behavior
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s ermi Using the A tables

Recall that the likelihood interface expects:
A(V,E,1)

What we have produced is a table of values:
A «(cos0,logE)

Clearly a bit of work is required to do interpolations, verify that errors for
interpolations are not significant

Also, we have ignored ¢-dependence. Need to quantify how much of a problem
this might be for particular studies



POINT SPREAD FUNCTION



PSF P6_V3_DIFFUSE for normal incidence

Point Spread Function
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Off-axis: more material, more MS
at low energy

More pattern recognition
confusion off-axis at high energy
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-~ Building the Point Spread Function

Gamma ray

/ Space Telescope

Angular Sep. [Front]

3 v S B T UL AR WL
0.4 ..li||~.IIIII1II\IVII‘II"|\I"I 45 g 5.5
25 3 35 4 .
- Iogw(EI MeV)

Use same simulated event sample as for A 4
Calculate delta between generated (true) and reconstructed directions év = v’ - v
Describe distribution as a function as of Energy, incident angle
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A Energy Scaling of PSF

Gamma-ray

/v Space Telescope
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Describe (on-axis) angular resolution scale as a function of energy
SP(E) = ( ¢cy® + ¢,2(E/100MeV)?™ ) %

Note that A+ weighted containment (points) can be somewhat larger
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@, ermi Scaled Angular Deviation

Gamma-ray

/v Space Telescope
i
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Scaling takes away much of energy dependence

However, behavior of tails varies with energy and incidence angle
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s ermi Fitting the Scaled Angular Deviation
s

: 10000 N T =
S 8000 = 80 3
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Fit a reasonable functional form to scaled angular deviation distribution in each
bin of logE,cos6



s, ermi Using the PSF tables
o ST
Recall that the likelihood interface expects:
P(v’;v',E,1)

What we have produced is tables of parameters for
K((v'-v)/Sp(E),0,, Y01V f;c0S0,l0gE)

Clearly a fair amount of work is required to do interpolations, verify that errors
for interpolations are not significant



ENERGY DISPERSION



° Energy Dispersion (D)

Energy resolution P6_V3_DIFFUSE for normal incidence
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confusion off-axis at high energy
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s, ermi Scaled Energy Resolution

“15 2 25 3 35 4 45 5 55 “15 2 25 3 35 4 45 5 55
Iogm(ElMeV) Iogm(ElMeV)

Scaling (with paraboloid) takes away much of energy and angular dependence

However, as with PSF, behavior of tails varies with energy and incidence angle
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@, ermi Fitting the Scaled Energy Resolution
o/ o Toons
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Fit a reasonable (?) functional form to scaled energy dispersion distribution in
each bin of logE,cos6



@, ermi Using the E; , tables
o ST
Recall that the likelihood interface expects:
D(v’;v’,E 1)

What we have produced is tables of parameters for
R(AE/ESK(E),0,4,09; Or9,0,1,X,,C0S0,l0gE)

Clearly a fair amount of work is required to do interpolations, verify that errors
for interpolations are not significant



VALIDATING THE IRFS WITH FLIGHT
DATA
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@, ermi Validating the IRFs with flight data

Gamma-ray

/ Space Tele%rope

« To validate A
— Standard candles? No!
— Step by step analysis of event selection efficiency
* Need “clean” photon samples
— Consistency checks
 To validate PSF
— Known point sources? Sort of.
* Pulsars.
- Tovalidate E;
— Known spectral features? DM lines? We wish...



s ermi Flight Data Calibration Samples

Gamma ay
/ Space Tele cope
Vela AGN sample Earth limb
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Difficult to model earth limb emission below ~ 10 GeV.

after background subtractio



WORK (FOR YOU) TO DO



@, ermi Some (Open-Ended) Projects

amma-ray

 Have a go at deriving your own IRFs
— Simulated data provided in extended FITs format
« Compare them to publically released ones
« Take a look at some data from calibration sources, design
tests for IRFs
— Pre-skimmed data with some additional variables
* Vela Pulse Phase
« Angular separation from nominal AGN position

« Zenith Angle



